
(1)

(2)
(3)
(4)
(5)
(6)

Course Goals

 Professional ethics

MARKON, Sandor

4. Term

1. Course Code

2208

3. Teacher

Fundamentals of Computer Programming

2. Course Title

Programming is the foundation of every other subject in ICT. By becoming proficient

in programming, students will be able to actively participate in projects involving

system creation. Programming is also necessary for testing ideas, constructing and

maintaining networks and servers, and in many other areas.

The course first reviews the fundamentals of procedural programming through

experimental exploration, using the dynamic, interactive, object-oriented Python

language. Next, students are introduced to static typing using C in the Linux

environment and Java in the Processing framework, so they will be prepared to

continue their studies with Java for Android programming, and C for generic

programming.

The course also introduces students to other common languages like C++ for Linux

programming, Common Lisp for AI (Artificial Intelligence) programming,

Mathematica for scientific programming etc. so they can continue extending their

repertoire after finishing the course.

6. Course Goals (Attainment Targets)

Become able to read, understand, and modify programs written in Python and

Java.

5. Course Overview and Objectives

Fall 1

Kobe Institute of Computing, Syllabus 2018

Can write and use Python scripts for everyday tasks.

Educational goals of the school

Become able to develop a small but complete system in Processing.
Become able to use the development environment of Processing.

Basic academic skills
Specialized knowledge and literacy

(3) (4)
(2) (3)

7. Correspondence relationship between Educational goals and Course goals

Ability to discover and

resolve the problem

in society

Fundamental

Competencies for

Working Persons

(1) (2) (3) (4)High level ICT

skills

(4)
(4)

Problem setting

Human skill

 (Tankyu skill）

Ability to continually improve own strengths

Ability to step forward

Hypothesis testing
Practice

Ability to work in a team
Ability to think through

Hypothesis planning

examination Quiz Reports Presentation Deliverables Other
〇
〇

〇 〇
〇 〇

40 30 30

Lesson 1: Orientation, introduction, motivation

8. Course Requirements (Courses / Knowledge prerequisite for this course)

None. This course uses only material freely available on the Internet (links will be

provided on Moodle).

9. Textbooks (Required Books for this course)

Fundamentals of Computer Systems (both courses can be taken concurrently)

What is programming? We consider solving everyday tasks, first by natural

language, then by writing exact and detailed instructions. Students learn the basics

of the Python language through a few simple exercises and use it to test their

understanding of the elements of programming principles.

(5)
(6)

Goals Evaluation method & point allocation

12. Notes

(Notice) This plan is tentative and might be changed at the time of delivery

Allocation

(lecture and demonstration, 90 min)

11. Evaluation

10. Reference Books (optional books for further study)

None

(2)
(3)
(4)

(1)

13. Course plan

Lesson 5: Java programming topics 1.

Lesson 6: Java programming topics 2.

Lesson 7: Java programming topics 3.

Lesson 2: Analyzing an Open Source program

Java is introduced as an object-oriented and safer alternative to C. We review the

object-oriented way of thinking and its use to develop models for systems.

We review some important Java libraries used in Android programming, including

graphics, user interactions, and networking.

We work through a set of examples from OSS systems showing how C is used in

practice, with emphasis on avoiding bad coding, dangerous constructs.

 (group work, 90 min)

Lesson 3: Code Reading fundamentals, review of the

program

Lesson 4: C programming topics and pitfalls

We review some commonly used tools and techniques for code reading, and use

them to analyze a larger piece of OSS system.

 (group work, 90 min)

We review the Processing language and programming environment, in particular its

use for rapid prototyping of interactive programs. Students develop original

demonstrations with graphics and sound, using Processing.

(lecture, 90 min)

A small real-world C program is reviewed in detail, motivating the need for “Code

Reading” skills and tools. We discuss the differences of the C syntax from Python,

the need for declarations and compilation, and other C-related issues.

(lecture and group discussion, 90 min)

(lecture and group discussion, 90 min)

(lecture and group discussion, 90 min)

Lesson 10: Python topics 1.

Lesson 11: Python topics 2.

Lesson 12: Python topics 3.

Lesson 13: Python exercises 1.

Student groups use Python to build and test a small but complete system providing

a well-defined new functionality, in a given short time.

(group work, 90 min)

Presentation of the group work results.

The power of the Python language is demonstrated through using it for common

tasks. Reviewed concepts include dynamic development, advanced data types,

iterations, exceptions, objects, modules.

We review practical development in Python, with structuring and building a project,

testing, using the unit test facilities, and deployment.

Introduce development using iPython notebooks, Jupyter and other IDEs.

We review Python libraries, including networking, graphics, numerical computation,

databases.

(lecture and discussion, 90 min)

(lecture and discussion, 90 min)

(lecture and discussion, 90 min)

 (group work, 90 min)

Lesson 9: Java exercises 2. (group work, 90 min)

Groups of students develop Java applications for Android, using Eclipse.

Lesson 8: Java exercises 1.

Presentation and discussion of the results of the group work.

Students review their experience with programming; discussions are directed to

helping to make programming a natural, integral part of their life with ICT. We also

discuss other programming languages and methods including Mathematica and

Common Lisp, and the choices available for finding the best tools.

Lesson 14: Python exercises 2. (group work, 90 min)

Lesson 15: Wrap-up (discussion, 90 min)

